
Zvma Family of Attached Matrix
Extensions

Warning! This document describes an Attached Matrix Extensions proposal
from SiFive. It is not an RVIA standard.

Version v0.1, 2024/12/18

Table of Contents
1. Overview . 1

1.1. Matrix Tile State . 2

1.1.1. Tile Punning . 2

1.2. Additions to vtype CSR . 4

1.3. Matrix-Multiply Operations . 5

1.4. Matrix Configuration Instructions . 7

1.4.1. vsettm, vsettn, and vsettk instructions . 8

1.4.2. Supported SEW, TWIDEN, and KMAX values . 9

1.5. Tile Subset Specifier (TSS) . 10

1.6. Load/Store Tile Subset to Memory . 10

1.7. Move Tile Subset between Tile State and Vector Registers. 11

1.8. Matrix Arithmetic Instructions . 12

1.8.1. FP4 Matrix Arithmetic . 13

1.8.2. Matrix Arithmetic Instruction Encoding. 13

1.9. Matrix Tile-Zero Instruction . 14

1.10. Context Status . 14

1.10.1. Zvma Context Status in mstatus . 14

1.10.2. Zvma Context Status in vsstatus . 14

1.10.3. Zvma Context Discard Instruction . 15

Chapter 1. Overview
The Zvma family of extensions supports high-throughput matrix-multiplication computation. These
extensions add new architectural state to each hart in the form of square matrix tiles. They provide
instructions that perform tall-skinny by short-wide matrix multiplications, i.e. outer products or
wide outer products. These instructions source their operands from vector registers and
accumulate their results into the new square matrix tiles. The inputs' data width is specified by
SEW, while the accumulators' data width is given by TEW=SEW*TWIDEN, where TWIDEN can be 1,
2, or 4, depending on the instruction.

The new computational instructions perform the operation C[M,N] += A[K,M]^T*B[K,N], where C is
stored in the tile state. Each of the input matrices A and B is held in a set of vector registers, where
each row of the matrix is held in a separate vector register group and the number of rows is given
by K. The inner dimension K can be a maximum (KMAX) of 1, 2, or 4, depending on the data type of
A and B.

In addition, the Zvma extensions provide instructions to move rows and columns of the matrix
arrays, either to and from the vector registers or to and from memory.

The Zvmabase extension provides the new architectural state and the new configuration, move,
load, store, and context-manipulation instructions. These instructions support tile EEW (TEW)
values corresponding to all supported SEW settings (8..ELEN).

The Zvma extensions build upon the vector extensions. The vector registers serve as a data source
for matrix operands, and the existing vector instructions are used for pre- and post-processing of
matrices. Hence, the Zvmabase extension requires the Zve32x extension.

The Zvma extensions are compatible with the RV32E, RV32I, RV64E, and RV64I base ISAs, but it is
expected that RV64I will be by far the most common base-ISA choice.

The following table lists the computational extensions in the Zvma family.

Extension Dependen
cies

Multiplicand Types Accumulator Type

Zvma32a8i Zvmabase [U]Int8 Int32

Zvma32a4f Zvmabase_
Zve32f

OCP MX FP4 FP32

Zvma32a8f Zvmabase_
Zve32f

OCP MX FP8 FP32

Zvma32a1
6f

Zvmabase_
Zve32f

BF16, FP16 FP32

Zvma32a3
2f

Zvmabase_
Zve32f

FP32 FP32

Zvma64a6
4f

Zvmabase_
Zve64d

FP64 FP64

1

1.1. Matrix Tile State
The new matrix state is organized into tiles, where a tile is a separately addressable two-
dimensional square matrix. The fixed matrix state is viewed as a different number of tiles,
depending on TEW.

The ISA is optimized for the case where TEW=32, as this is the most common accumulator size.
When TEW=32, the tiles have dimensions TExTE elements, where TE is a parameter of the
implementation. TE is constrained to be a power of 2, VLEN/4 >= TE >= 4. The upper bound is set by
the requirement that a tile row or column must fit within a single vector register group (VLEN*8
bits). Implementations may choose less than the maximum TE to reduce implementation cost. The
configuration instructions, described below, support writing of TE-agnostic code.

The ISA fixes the number of TEW=32 tiles to four (mt0, mt4, mt8, mt12) to support all cases at
reasonable performance. The matrix state needs to hold at least one accumulator as well as
transposes of one or both inputs to support efficient execution of all matrix operations. Also,
providing more separately addressable tiles allows more flexible usage of tile accumulators
enabling optimizations such as register blocking of the operands, reducing memory traffic.

Tile EEW #Tiles Tile Dimensions Tile Specifiers
 8 16 TExTE mt0,mt1, ..., mt14,mt15
 16 8 TExTE mt0,mt2,mt4,mt6,mt8,mt10,mt12,mt14
 32 4 TExTE mt0, mt4, mt8, mt12
 64 8 (TE/2)x(TE/2) mt0,mt2,mt4,mt6,mt8,mt10,mt12,mt14

For smaller TEW<32, the tile dimensions (TExTE) are kept the same as TEW=32. Every halving of
TEW halves the state required for a single tile and so the number of tiles increases by a factor of
two. The storage of each TEW=32 tile is divided to form two TEW=16 tiles (e.g. mt0 for TEW=32 forms
mt0 and mt2 for TEW=16), and the storage of each TEW=16 tile is divided to form two TEW=8 tiles
(e.g. mt0 for TEW=16 forms mt0 and mt1 for TEW=8).

For TEW=64, the tile dimensions are reduced by a factor of 2 in each dimension (i.e. tiles are TE/2 x
TE/2 elements), but the number of tiles increases to 8 as the tile size shrinks quadratically while the
element width only doubles. The storage of each TEW=32 tile is divided to form two TEW=64 tiles
(e.g. mt0 for TEW=32 forms mt0 and mt2 for TEW=64).

Additional ISA extensions describe the tile dimensions. The ZvmaNt extension indicates TE ≥ N, e.g.
Zvma32t indicates TE is at least 32.

NOTE
The accumulator array dimensions (TE) may be determined dynamically with the
vset[i]vl[i] instructions to enable writing TE-agnostic software.

1.1.1. Tile Punning

The tile state is reshaped for each supported TEW which results in tiles being combined to support
wider accumulators. For example, 4 TEW=8 tiles (mt0..3) are combined to support a single TEW=32
tile (mt0).

2

Given the layout of elements for each TEW in the tile, there is an aliasing of the differently sized
elements in the combined space. The aliasing is a repetitive pattern of 4x4 (2x2 TEW=64) sub-
matrices of elements as illustrated in the following figure.

Figure 1. Tile Punning Aliasing

Viewing the tile state as a linearized buffer of 16 * TE * TE bytes, an element’s position can be
determined with the following algorithm.

 Given,
 tile: tile
 tew: element size
 row,col: element indices

 case (tew) {
 8: {
 ptile = tile
 minor_offset = (row % 4) * 4 + (col % 4)
 major_offset = (row / 4) * (TE / 4) + (col / 4)
 }
 16: {

3

 ptile = tile + ((row & 2) >> 1)
 minor_offset = (row % 2) * 4 + (col % 2) * 2 + ((col / 2) % 2) * 8
 major_offset = (row / 4) * (TE / 4) + (col / 4)
 }
 32: {
 ptile = tile + (row & 2) + ((col & 2) >> 1)
 minor_offset = (row % 2) * 8 + (col % 2) * 4
 major_offset = (row / 4) * (TE / 4) + (col / 4)
 }
 64: {
 ptile = tile + (row & 1)
 minor_offset = (col % 2) * 8
 major_offset = (row / 2) * (TE / 4) + (col / 2)
 }
 }

 offset = (ptile * TE * TE) + (major_offset * 16) + minor_offset

1.2. Additions to vtype CSR
The tm, tk, and vtwiden fields are added to the existing vtype CSR in previously reserved space.

bits field
XLEN-1 vill
 30 reserved
29:16 tm[13:0]
15:14 reserved
13:11 tk[2:0]
10:9 vtwiden[1:0]
 8 altfmt
 7 vma
 6 vta
 5:3 vsew[2:0]
 2:0 vlmul[2:0]

tm can hold values from 0-TE, inclusive.

tk can hold values from 0-4, inclusive.

tn is given by the value in the vl register.

If the Zvma32a16f extension is implemented, altfmt may be set to 1 when SEW=16 (indicating
BF16). Selecting altfmt=1 for other SEW settings is reserved.

NOTE
We expect most implementations will set vill in vtype when a reserved
combination of altfmt and SEW is selected.

If vtwiden==0, the matrix unit is not configured.

4

1.3. Matrix-Multiply Operations
The general form of the matrix-multiply operations is:

 C[tm,tn] += A[tk,tm]^T * B[tk,tn]

where the inputs A and B are each sourced from a vector register group, while the accumulator C is
held in a matrix tile. A, B, and C are all specified using register specifier fields in the instruction
encoding.

Figure 2. A or B Matrix Operand

The values of tm, tn, and tk are obtained from CSRs, with tn being an alias for the existing vl
register. tm and tk are fields in the existing vtype register. The new configuration instructions
described below allow the values of tm, tn, and tk to be set in an implementation-agnostic manner
from the application matrix dimensions.

Each vector register group input has tk rows, where each row is held separately in one or more
vector registers, with the total number of vector registers constrained to fit in one eight-register
group. Each row fits within a vector register group (i.e. an aligned power-of-2 number of vector
registers) and the collection of rows also fits in a (potentially larger) vector register group. The
value of tk sets the dimension of the dot products performed for each accumulator element and the
maximum value of tk (KMAX) depends on the element widths, with a maximum value of 4.

5

Figure 3. Matrix Operand Layout in Vector Register Group

This format allows existing vector unit-stride loads to be used to load each row of an input from a
memory matrix held in row-major format.

Successive rows are separated by (8/KMAX) vector registers. For example, for vector register group
specifier v8, and assuming KMAX=4 and LMUL=2, then v8..v9 holds one matrix row, v10..v11 holds
the next row, v12..v13 the next, and v14..v15 the last. But when KMAX=4 and LMUL=1, then v8, v10,
v12, and v14 hold the successive rows of the matrix: the separation between rows is the same, but
the odd-numbered vector registers are skipped.

Vector register specifiers must be divisible by LMUL. For example, when KMAX=4 and LMUL=2, v8
is valid but v9 is not. But when KMAX=4 and LMUL=1, both are valid: the former represents the
even-numbered registers v8..v14, whereas the latter represents the odd-numbered registers v9..v15.

NOTE
These definitions facilitate writing LMUL-agnostic software, but they do not
preclude LMUL-conscious software from using all of the vector registers.

Vector register specifiers, when taken modulo 8, must be less than 8/KMAX. For example, when
KMAX=4, v10 is invalid.

NOTE
This constraint prevents register groups from spanning EMUL=8 register-group
boundaries, simplifying vector-unit implementations.

6

1.4. Matrix Configuration Instructions
Application matrices have varied sizes, and implementations will vary in the TE dimensions they
support. The matrix configuration instructions allow a single binary matrix-multiply routine to
work for any size application matrix multiply on any sized matrix-multiply implementation.

NOTE
More optimized routines are possible when microarchitectural parameters are
known to software.

The actual size of a matrix-multiply operation is determined by values in two CSRs, tk and tm are
fields in the vtype register, tn is the same as the vl register. These CSRs are set using configuration
instructions.

Encoding of vector and matrix configuration instructions

 31 30 25 24 20 19 15 14 12 11 7 6 0
 0 | zimm[10:0] | rs1 | 1 1 1 | rd |1010111| vsetvli
 1 | 1| zimm[9:0] | uimm[4:0]| 1 1 1 | rd |1010111| vsetivli
 1 | 000000 | rs2 | rs1 | 1 1 1 | rd |1010111| vsetvl

 1 | 000010 | 00000 | rs1/ATN| 1 1 1 | rd |1010111| vsettn
 1 | 000010 | 00001 | rs1/ATM| 1 1 1 | rd |1010111| vsettm
 1 | 000010 | 00010 | rs1/ATK| 1 1 1 | rd |1010111| vsettk
 1 6 5 5 3 5 7

ATM is application matrix m dimension
ATN is application matrix n dimension
ATK is application matrix k dimension

The existing vset[i]vl[i] instructions are used to configure the hart to execute Zvma instructions.
These instructions behave as defined in the V extension, but their behavior is modified when the
requested vtype value has vtwiden != 0. In particular, the vsew and vtwiden fields are set as requested,
but other fields in vtype are determined using special rules described below. AVL is determined as
described in the V spec, but the new vl is determined using a special rule described below. rd is
written with the new value of vl, as usual. Although vill is set under different rules, as described
below, the behavior remains that if vill is set, then the other bits in vtype, as well as vl, are set to
zero.

vset[i]vl[i] behavior when requested vtype.vtwiden != 0

TEW = SEW * TWIDEN
ETE = TEW < 64 ? TE : TE/2 // Effective number of elements along tile edge
EVE = VLEN/SEW // Effective number of elements in a vector register

LMUL = min(8/KMAX, 8/TWIDEN, ceil(ETE/EVE))
 ^ ^ ^
 | | +-matrix engine size constraint
 | +-matrix row/col must fit in vector register group

7

 +-leave space for K dimension

tn/vl = min(AVL, LMUL*EVE, ETE) // AVL is as defined in V spec
tm = min(ATM, LMUL*EVE, ETE) // ATM comes from requested vtype.tm
tk = min(ATK, KMAX) // ATK comes from requested vtype.tk
altfmt = ALTFMT // ALTFMT comes from requested vtype.altfmt
vma = 1
vta = 1

vill = (TEW > ELEN) || (any reserved field in vtype != 0)

rd = tn/vl

A new assembler pseudo-op, vsettnt ("set tn and type") is provided to simplify using the vsetvli
instruction for Zvma purposes.

// vsetvli rd, rs1, (vsew << 3) + (alt << 8) + (vtwiden << 9)
vsettnt rd, rs1, eX, wY

The valid `wY` and `eX` options are as follows.

vtwiden assembler syntax
01 w1
10 w2
11 w4

vsew alt assembler syntax
00 0 e8
01 0 e16
01 1 e16alt
10 0 e32
11 0 e64

An `eX, wY` combination is valid if and only if X * Y <= ELEN.

NOTE
w0 is not supported—this behavior is achieved by the existing vset[i]vl[i]
instructions—and assemblers should reject it.

1.4.1. vsettm, vsettn, and vsettk instructions

These instructions set tm, tn, or tk to the value in rs1, constrained by the current matrix
configuration. The new value of tm, tn, or tk is also written to the scalar destination register rd. If
the matrix unit has not been configured, i.e. vtwiden=0 in vtype, the instruction sets vill in vtype.

These instructions are included in the Zvmabase extension.

vsettm rd, rs1 // rd = tm = min(rs1=ATM, LMUL*EVE, ETE)

8

The vsettm instruction sets tm to be the lesser of rs1 (ATM), LMUL*EVE, and ETE.

vsettn rd, rs1 // rd = tn/vl = min(rs1=ATN, LMUL*EVE, ETE)

The vsettn instruction sets tn to be the lesser of rs1 (ATN), LMUL*EVE, and ETE.

vsettk rd, rs1 // rd = tk = min(rs1=ATK, KMAX)

The vsettk instruction sets tk to the lesser of rs1 (ATK) and KMAX.

1.4.2. Supported SEW, TWIDEN, and KMAX values

The inner dimension specified by tk is used to support fused dot-product operations on narrower
datatypes to increase efficiency. The ISA fixes maximum K values (KMAX) of matrix-multiply
instructions according to SEW and TWIDEN to simplify ISA specification of fused arithmetic
operators.

NOTE
Unlike other matrix accelerator architectures that support fusion of narrower
datatypes by flattening K into both the M and N dimensions, this approach allows
software to use standard matrix formats.

TEW=8

SEW TWIDEN KMAX
 8 1 4 (fused 4-element dot product)

TEW=16

SEW TWIDEN KMAX
 8 2 4 (fused 4-element dot product)
16 1 2 (fused 2-element dot product)

TEW=32

SEW TWIDEN KMAX
 8 4 4 (fused 4-element dot product)
16 2 2 (fused 2-element dot product)
32 1 1

TEW=64

SEW TWIDEN KMAX
16 4 2 (fused 2-element dot product)

9

32 2 1
64 1 1

1.5. Tile Subset Specifier (TSS)
For operations that move rows or columns between the tiles and vector registers or memory, a
scalar value is used to encode the set of tile elements that are accessed and the pattern by which
they are accessed.

bits meaning
XLEN-1:31 reserved
 30:27 tile specifier (0-15)
 26:24 pattern (0=row, 1=col, >1 reserved)
 23:0 index within pattern (e.g. row/col index)

When there are fewer than 16 tiles due to the specified TEW, the log2(16 / #Tiles) LSBs of the tile-
specifier field are ignored, such that this field always refers to a valid tile.

The 3-bit field for pattern currently only has two encodings defined, row and column. The pattern
field defines how the index field is interpreted. For the currently defined row and column patterns,
the index field is treated as an unsigned integer providing a one-dimensional index of the row or
column. Row and column indices greater than or equal to ETE are reserved.

NOTE
We expect most implementations will ignore reserved bits in TSS, taking pattern
mod 2, and taking the index within the pattern mod ETE.

1.6. Load/Store Tile Subset to Memory
These instructions transfer tile subsets between the tile state and memory. Implementations must
provide vector loads and stores with EEWs corresponding to all supported SEW settings (8..ELEN).
These instructions are included in the Zvmabase extension.

// Load tile subset from memory
vlte8 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vlte16 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vlte32 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vlte64 rs2, (rs1) // rs1 is memory address, rs2 is TSS

// Store tile subset to memory
vste8 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vste16 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vste32 rs2, (rs1) // rs1 is memory address, rs2 is TSS
vste64 rs2, (rs1) // rs1 is memory address, rs2 is TSS

31 29 28 27 26 25 24 20 19 15 14 12 11 7 6 0

10

 nf mew mop vm rs2 rs1 width vd/vs3 opcode
e e e 1 0 0 1 rs2 rs1 1 1 1 0 0000111 // Load tile
e e e 1 0 0 1 rs2 rs1 1 1 1 0 0100111 // Store tile

eee
000 8
001 16
010 32
011 64
1xx reserved

The integer register specified by rs1 holds the base address in memory. The integer register
specified by rs2 holds the tile subset specifier. These instructions do not support masks. EEW is
statically encoded in the instruction.

These instructions always load and store the tile subset to a contiguous region of memory. For the
currently defined row and column patterns, the elements of the row or column are stored in
increasing index order in memory.

For these instructions, the body elements are those with indices in the range [vstart, min(vl, ETE) -
1], and the tail elements are those with indices ≥ min(vl, ETE).

NOTE

Since vl=tn holds the number of columns in the accumulator, i.e. the length of a
row, these instructions are oriented towards loading and storing accumulator rows.
When loading and storing accumulator columns, additional vsetvli or vsettn
instructions may be needed to program vl=tn to hold the number of rows, i.e. the
length of a column, instead.

For the purposes of exception handling, these instructions are considered to access memory in
ascending order beginning at the byte determined by a function of the base address in rs1, the
vstart value, and the instruction EEW. No memory is accessed below the elements specified by the
vstart value.

The matrix extension follows the precise exception model of the vector extension, allowing
memory to be updated past the element indicated by vstart on a trap.

Misaligned element addresses are handled the same as for unit-stride vector loads and stores.

1.7. Move Tile Subset between Tile State and Vector
Registers
Tile subset operations transfer elements between a tile and a vector register group. These
instructions are included in the Zvmabase extension.

// Move tile subset to vector register group, using TEW=SEW
vtmv.v.t vd, rs1 // vd is destination vector register, rs1 is TSS of source

// Move vector register group to tile subset, using TEW=SEW

11

vtmv.t.v rs1, vs2 // vs2 is source vector register, rs1 is TSS of destination

31 26 25 24 20 19 15 14 12 11 7 6 0
 funct6 vm rs2 rs1 funct3 vd/vs3 opcode
 010000 1 11111 rs1 1 1 0 vd 1010111 // vtmv.v.t
 010111 1 vs2 rs1 1 1 0 0 1010111 // vtmv.t.v

For these instructions, the body elements are those with indices in the range [vstart, min(vl, ETE) -
1], and the tail elements are those with indices ≥ min(vl, ETE).

1.8. Matrix Arithmetic Instructions
These instructions all have the form C += A^T * B, where C is held in a tile and A and B are supplied
by vector register groups.

Unsupported vtype settings are handled the same as for vector instructions. An illegal-instruction
exception is raised if vstart is nonzero.

vtype holds SEW and TWIDEN
vs2 specifies A vector register group
vs1 specifies B vector register group
mtd is C destination tile specifier

IEEE FP defined for: SEW TWIDEN ALTFMT
16 2 0 FP16 (Zvma32a16f)
16 2 1 BF16 (Zvma32a16f)
32 1 0 FP32 (Zvma32a32f)
64 1 0 FP64 (Zvma64a64f)
#
mm.f.f mtd, vs2, vs1 # IEEE FP matmuls (FP16/BF16, FP32, FP64)

OCP FP8 defined for SEW=8 TWIDEN=4, accumulate into FP32
mm.e5m2.e5m2 mtd, vs2, vs1 # vs2=E5M2, vs1=E5M2 (Zvma32a8f)
mm.e5m2.e4m3 mtd, vs2, vs1 # vs2=E5M2, vs1=E4M3 (Zvma32a8f)
mm.e4m3.e5m2 mtd, vs2, vs1 # vs2=E4M3, vs1=E5M2 (Zvma32a8f)
mm.e4m3.e4m3 mtd, vs2, vs1 # vs2=E4M3, vs1=E4M3 (Zvma32a8f)

INT8 defined for SEW=8 TWIDEN=4, accumulate into INT32
mm.u.u mtd, vs2, vs1 # unsigned vs2(A) unsigned vs1(B) (Zvma32a8i)
mm.s.u mtd, vs2, vs1 # signed vs2(A) unsigned vs1(B) (Zvma32a8i)
mm.u.s mtd, vs2, vs1 # unsigned vs2(A) signed vs1(B) (Zvma32a8i)
mm.s.s mtd, vs2, vs1 # signed vs2(A) signed vs1(B) (Zvma32a8i)

NOTE

There are numerous FP8 formats being developed and standardized, but the OCP
MX formats appear to be gaining the most traction. Additional formats would
ideally be supported with explicit conversions to BF16 or FP16 in the vector unit, as
supporting all combinations natively would consume substantial opcode space. But

12

native support for additional formats remains possible if sufficient demand arises.

These instructions use the values of tm, tn, and tk to determine what computations to perform. If
any of these values are zero, then no computation is performed and no state is updated.

Any tile elements outside the range [0, tm-1] x [0, tn-1] are considered part of the tail and are
handled using a tail-agnostic policy.

The invalid and overflow scalar floating-point exception flags are updated by the results of floating-
point matrix operations. The inexact, underflow, and divide-by-zero flags are not updated, nor is
the fixed-point saturation flag.

For SEW ≥ 32, floating-point products are computed in IEEE 754 arithmetic then rounded to a TEW-
bit value, using the rounding mode specified by frm. They are then added to the accumulator in
IEEE 754 arithmetic, using the same rounding mode.

For SEW ≤ 16, floating-point products are bulk-normalized, rounded to odd, accumulated in fixed-
point arithmetic, then converted to FP32, rounding to odd. Finally, they are added to the
accumulator in IEEE 754 arithmetic, using the rounding mode specified by frm.

1.8.1. FP4 Matrix Arithmetic

Support for 4-bit floating-point operands is provided through packed matrix multiply instructions
with SEW=8.

p2mm.f.f mtd, vs2, vs1 # OCP MX FP4, accumulate into FP32 (Zvma32a4f)

Each 8-bit input element is divided into two 4-bit fields. The p2mm.f.f instruction treats tm, tn, and tk
values as defining the same 8-bit operand fields and 32-bit accumulators as for a regular SEW=8
matrix multiply instruction, except that each 8-bit multiply between two elements is replaced with
a two-element dot product of two 2x4-bit vectors.

1.8.2. Matrix Arithmetic Instruction Encoding

The matrix arithmetic instructions are encoded in the second vector major opcode, OP-VE.

The rd field encodes the accumulator tile, represented with t in the diagram below. The tile-
selection bits are allocated from the MSB of the rd field (e.g. TEW=32 operations have 4 tiles,
requiring 2 bits, t[3:2]). Tile-selection bits not present in the instruction encoding are defined to be
zero. If t encodes an invalid tile specifier, i.e. t modulo (16 / #Tiles) is nonzero, the instruction is
reserved.

31 26 25 24 20 19 15 14 12 1110 9 8 7 6 0
 funct6 vm vs2 vs1 funct3 rd opcode
 111100 1 vs2 vs1 001 t t t 0 0 1110111 // mm.f.f

 111100 1 vs2 vs1 001 t t t 0 1 1110111 // p2mm.f.f

13

 11111a 1 vs2 vs1 001 t t 0 0 b 1110111 // mm.<a>.

Encoding of a/b fields
0 e5m2
1 e4m3

 11110a 1 vs2 vs1 000 t t 0 0 b 1110111 // mm.<a>.

Encoding of a/b fields
0 unsigned
1 signed

1.9. Matrix Tile-Zero Instruction
The vtzero.t instruction writes 0 to each element of the tm by tn submatrix of the destination tile.
Any tile elements outside the range [0, tm-1] x [0, tn-1] are considered part of the tail and are
handled using a tail-agnostic policy. If the matrix has not been configured, i.e. vtwiden=0 in vtype, an
illegal-instruction exception is raised. This instruction is included in the Zvmabase extension.

Write zeros to tile
vtzero.t mtd

31 26 25 24 20 19 15 14 12 1110 9 8 7 6 0
 010000 1 11110 00000 110 t t t t 0 1010111 // vtzero.t

1.10. Context Status

1.10.1. Zvma Context Status in mstatus

A Zvma context status field, MS, is added to mstatus[30:29] and shadowed in sstatus[30:29]. It is
defined analogously to the floating-point context status field, FS.

Attempts to execute any instruction that accesses the tile state raises an illegal-instruction exception
when mstatus.MS is set to Off. Note, the vset* instructions do not access the tile state.

When mstatus.MS is set to Initial or Clean, executing any instruction that changes tile state will
change mstatus.MS to Dirty. Implementations may also change mstatus.MS from Initial or Clean to
Dirty at any time, even when there is no change in tile state.

If mstatus.MS is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing
specifications.

1.10.2. Zvma Context Status in vsstatus

When the hypervisor extension is present, a Zvma context status field, MS, is added to
vsstatus[30:29]. It is defined analogously to the floating-point context status field, FS.

14

When V=1, both vsstatus.MS and mstatus.MS are in effect: attempts to execute any instruction that
accesses tile state raise an illegal-instruction exception when either field is set to Off.

When V=1 and neither vsstatus.MS nor mstatus.MS is set to Off, executing any instruction that
changes tile state will change both mstatus.MS and vsstatus.MS to Dirty. Implementations may also
change mstatus.MS or vsstatus.MS from Initial or Clean to Dirty at any time, even when there is no
change in tile state.

If vsstatus.MS is Dirty, vsstatus.SD is 1; otherwise, vsstatus.SD is set in accordance with existing
specifications.

If mstatus.MS is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing
specifications.

For the purposes of the mstatus.VS and vsstatus.VS fields, all Zvma instructions (including
configuration instructions) are considered to modify vector state. For the purposes of the mstatus.FS
and vsstatus.FS fields, the Zvma instructions that implicitly access fcsr are considered to modify
floating-point state.

1.10.3. Zvma Context Discard Instruction

31 26 25 24 20 19 15 14 12 11 7 6 0
 funct6 vm vs2 vs1 funct3 rd opcode
 010000 1 11100 00000 110 00000 1010111 // vtdiscard

The vtdiscard instruction is provided to inform the runtime that the tile state is no longer useful
and need not be saved. vtdiscard raises an illegal-instruction exception if mstatus.MS=Off (or if V=1
and vsstatus.MS=Off). Otherwise, it changes mstatus.MS to Initial (and, if V=1, changes vsstatus.MS
to Initial). This instruction is included in the Zvmabase extension.

vtdiscard raises an illegal-instruction exception if vtype.vill=1, but does not raise an exception as a
result of vtype.vtwiden being zero.

NOTE
vtdiscard does not actually write the tile state. For ABI purposes, the tile state
becomes UNPREDICTABLE as a result of executing this instruction.

15

	Zvma Family of Attached Matrix Extensions
	Table of Contents
	Chapter 1. Overview
	1.1. Matrix Tile State
	1.1.1. Tile Punning

	1.2. Additions to vtype CSR
	1.3. Matrix-Multiply Operations
	1.4. Matrix Configuration Instructions
	1.4.1. vsettm, vsettn, and vsettk instructions
	1.4.2. Supported SEW, TWIDEN, and KMAX values

	1.5. Tile Subset Specifier (TSS)
	1.6. Load/Store Tile Subset to Memory
	1.7. Move Tile Subset between Tile State and Vector Registers
	1.8. Matrix Arithmetic Instructions
	1.8.1. FP4 Matrix Arithmetic
	1.8.2. Matrix Arithmetic Instruction Encoding

	1.9. Matrix Tile-Zero Instruction
	1.10. Context Status
	1.10.1. Zvma Context Status in mstatus
	1.10.2. Zvma Context Status in vsstatus
	1.10.3. Zvma Context Discard Instruction

